Buscar en el sitio

Contacto

moncadagerman

Bogotá-Colombia

3012653317

gmoncada@yahoo.es

Asesorías y tutorias MAPA DEL SITIO

1 Secuenciacion

  • Introducción
  • Metodologìa
  • Evaluaciòn y acreditaciòn
  • BIBLIOGRAFÍA

 

 

 

2 Sistemas de coordenadas

  • Coordenadas cilíndricas 
  • Coordenadas esféricas 
  • Operador Gradiente 
  • Ecuaciones de Laplace y de Poisson

3 Ondas Electromagnéticas

  • Campos eléctricos y magnéticos variables en el tiempo

  • Modelamiento matemático
  • Electrostática en medios dielectrícos 
  • Álgebra del operador nabla. Aplicación sobre productos
  • Ecuaciones de Maxwell en forma integral

5 Propagación de ondas electromagnéticas

  • Soluciones a la ecuación de onda 
  • Densidad de energia .
  • Vector de Poynting y densidad de energia
  •  Ecuaciones de onda para los campos E y H 
  • Ecuaciones de maxwell en forma fasorial.
  • Dipolo eléctrico oscilante 
  • Características de radiación 
  • Radiación de una antena de media onda 
  • Los límites entre el campo cercano y el campo lejano
  • Análisis del comportamiento de los materiales para campos electrodinámicos
  • Medios conductores

6 Propiedades eléctricas y magnéticas de los medios materiales

  • Profundidad de penetración
  • Distribuciones de corrientes inducidas en los conductores
  • Polarización de una onda
  • Campos cuasiestacionarios

 

7 Líneas de trasnsmisión

  • Lineas con perdidas
  • Líneas con bajs perdidas 
  • Potencia

8 Fundamentos de antenas

  • Antena isotrópica 
  • Densidad deflujo de potencia
  • Directividad
  • Ganancia
  • Diagrama de radiación 
  • Directividad y área del haz
  • Area equivalente de una antena 
  • La polarización de una antena

ANTENAS CON REFLECTOR PARABÓLICO

  • Consideraciones sobre el diseño de antenas parabólicas
  • El alimentador
  • Ganancia y Eficiencia

9 Reflexión y refracción de OEM

 

Responsabilidad. Es personal sea conciente tome decisiones y ejecutelas. No responsabilice a terceros. Asuma sus consecuencias. Recuerde que sus acciones la fectan y afectan alos demás

Lealtad

La lealtad es cumplimiento de lo que exigen las leyes, normas  de la fidelidad y las del honor de las personas  de bien. No confundir lealtad con solidaridad grupal

Tenga presente 

Cuando comienze a estudiar, esta tomando actitudes propias de valientes: en ese momento aparecen valores como la fe, la esperanza y la confianza. La Fe depende de su firmeza para apoyarse en algo estable, sea prudente lo estable no es absoluto y en este contexto lo absoluto es estudiar,  es un primer paso para que no haya fracaso estudiantil. La Confianza le permite descansar sobre las fortalezas que adquiere cuando comienza a estudiar, esto lo hace sentir más grande y más fuerte y lo ayuda a permanecer firme en sus propósitos. 

La Esperanza es visualizar el futuro para construir y materializar los resultados de su estudio. Se trata de ralizar estas actitudes que son muy parecidas. La fe es importante cuando siente que fracasa en sus asignaturas, pero no es suficiente.  Aprobar fisica no es un milagro,  es el resultado de la perseverancia en el estudio así podra superar los momentos de crisis y salir fortalecido. ¡No pierda la fe en el momento en que pierda la fe solicite ayuda en los espacios utilizados para las tutorias !pero estudie! 

 

 

 Unidades didácticas y acuerdo de evaluació n elecromagnetismo

Bien venido a este sitio. aqui va a encontrar talleres resuelto y materia a utilizar, además un banco de datos sobre evaluaciones hechas. Debe consultarlo permanentemente con el propósito  de que tenga exito en este espacio academico

¿ Que es la carga eléctrica? 

La carga eléctrica es una cualidad de la materia responsable de la interacción electromagné tica entre distintas partículas. La carga elé ctrica posee las siguientes propiedades: 
 
1 La carga es dual: existen dos tipos que se denominan positivo y negativo, discernible por el comportamiento que part´ıculas cargadas con cada tipo muestran en su interacci´on con otras dadas, y por la propiedad de neutralizar en cierta medida su efecto cuando se combinan.
 
2 La carga está  cuantizada: del conocimiento actual de las partículas elementales se admite que existe una carga m´ınima, que es la del electr´on para el tipo negativo y la del prot´on para el positivo, ambas iguales en valor absoluto. Cualquier estado de agregaci´on de la materia posee una carga múltiplo de dicho valor
 
3 La carga se conserva localmente: nunca se ha observado un fenómeno del cual resulte la creación neta de carga en un punto del espacio. Siempre que aparece (o se destruye) una carga en un punto, aparece (o se destruye) una carga opuesta en el mismo punto
 
4 La carga es un invariante relativista: su medida da el mismo resultado en cualquier sistema de referencia, sea cual sea su velocidad. La carga se simboliza habitualmente por la letra q . Su medida y la adopción de la unidad debe posponerse hasta que se describan la interacción electromagnética y las condiciones experimentales adecuadas para ello. La  unidad en el Sistema Internacional es el Culombio C, se representa mediante la letra C y que la carga del electóon es $$e=1.6\,10^{-19}C$$

 

Mecánica

La mecánica clásica es la ciencia que estudia las leyes del comportamiento de cuerpos físicos macroscópicos en reposo y a velocidades pequeñas comparadas con la velocidad de la luz.

Existen varias formulaciones diferentes, en mecánica clásica, para describir un mismo fenómeno natural que, independientemente de los aspectos formales y metodológicos que utilizan, llegan a la misma conclusión.

    La mecánica vectorial. Se deduce  directamente de las leyes de Newton, por eso también se le conoce como «mecánica newtoniana». Es aplicable a cuerpos que se mueven en relación a un observador a velocidades pequeñas comparadas con la de la luz. Fue construida en un principio para una sola partícula moviéndose en un campo gravitatorio. Se basa en el tratamiento de dos magnitudes vectoriales bajo una relación causal: la fuerza y la acción de la fuerza, medida por la variación del momentum (cantidad de movimiento). El análisis y síntesis de fuerzas y momentos constituye el método básico de la mecánica vectorial. Requiere del uso privilegiado de sistemas de referencia inercial.
La mecánica analítica. Es un modelo matemático fundamentado en coordenadas generalizadas y la utilizacion de operadores lagranjianos y hamiltonianis. Sus métodos son poderosos y trascienden de la Mecánica a otros campos de la física. Se puede encontrar el germen de la mecánica analítica en la obra de Leibniz que propone para solucionar los problemas mecánicos otras magnitudes básicas (menos oscuras según Leibniz que la fuerza y el momento de Newton), pero ahora escalares, que son: la energía cinética y el trabajo. Estas magnitudes están relacionadas de forma diferencial. La característica esencial es que, en la formulación, se toman como fundamentos primeros principios generales (diferenciales e integrales), y que a partir de estos principios se obtengan analíticamente las ecuaciones de movimiento.
 


Contenidos de la asignaturamecaniPiilot.pdf (2982619)



Temas del curso


Bloque temático 1: Principios de la Mecánica.
-Conceptos básicos y leyes fundamentales de la Mecánica.

Bloque temático 2: Estática de los sistemas estructurales.
-Estática del punto material y de los sistemas de puntos materiales.
-Fuerzas aplicadas sobre un sólido rígido. Reducción. Clasificación de los sistemas de fuerzas.
-Sistemas de fuerzas paralelas. Centro de masas.
-Fuerzas distribuidas.
-Estática del sólido rígido. Grados de libertad.

-Estática de los sistemas de sólidos rígidos.

-Acciones internas sobre una sección. Vigas estáticamente determinadas.

Relación detallada y ordenación temporal de los contenidos

Tema 1: Conceptos y principios fundamentales (8 horas presenciales).
Tema 2: Fuerzas aplicadas sobre un sólido rígido. Reducción (12 horas presenciales).
Tema 3: Fuerzas paralelas. Fuerzas distribuidas (9 horas presenciales).
Tema 4: Estática del sólido rígido (13 horas presenciales).
Tema 5: Estática de sistemas de sólidos rígidos. Acciones sobre una sección (11 horas presenciales).
Tema 6: Estática del sólido elástico. Momentos de inercia (7 horas presenciales).


Bloque temático 3: Análisis del sólido elástico y geometría de masas.
-Ley de Hooke. Viga sometida a flexión pura. Momento de inercia.

La fórmula barómetrica se deduce de la ley de los gases ideales y aplicando el principio de la presión hidrostática

$$\rho=\frac{M\cdot P}{R\cdot T}$$ si la densidad es conocida la presión es $$P=\dfrac{\rho TR}{M}$$ ahora como la atmosfera es un fluido dentro de este toda la presion es hidrostática y se puede escribir la variación de esta como

$$dp=-\rho gdz$$ dividiendo por P $$\dfrac{dp}{P}=\dfrac{-\rho Mgdz}{\rho RT}$$

Integrando desde la superficie de la tierra hasta una altura h

$$\intop_{P_{0}}^{P}\dfrac{dP}{P}=\int_{0}^{h}\dfrac{-\rho Mgdz}{\rho RT}$$

se obtiene la siguiante expresión :

$$\ln\left(\dfrac{P}{P_{0}}\right)=\dfrac{-Mgh}{RT}$$